Detection of CCND1 Overexpression By RNA-Seq from TNA Samples As a Surrogate for t(11:14)Translocation Traditionally Measured By FISH in Multiple Myeloma Patients for Improved Patient Care

Abhisek Ghosal¹, Francys Alarcon¹, Samuel Koo¹, Grace Kang¹, Archana Ramesh², Tibor Gyuris², Segun C Jung¹, Brad Thomas³, Rudy Fabunan¹, Christophe Magnan², Hyunjun Nam², Paris Petersen¹, Fernando Lopez-Diaz², Susan¹ Yamahata¹, Ryan Bender², Sally Agersborg¹, Fei Ye², Vincent A. Funari¹

Introduction

- Multiple Myeloma (MM) is a blood cancer type affecting plasma cell in bone marrow. MM is heterogenous in nature but t(11;14)(q13;q32) translocation is a common prognostic marker among MM patients. CCND1 (Cyclin D1) translocation, resulting from the t(11:14) with immunoglobulin heavy chain (IGH) causes over expression (OE) of CCND1, which leads to cell cycle abnormalities, thus oncogenesis.
- Currently, FISH is the gold standard for detection t(11:14) translocations at the DNA level but it cannot detect the downstream molecular events that result in RNA stability/RNA turn-around rate. It is reported that CCND1 can be upregulated independent of t(11:14) translocations, therefore obtaining CCND1 expression levels is important for diagnostic purposes.
- Heme NGS test for TNA panel from NeoGenomics (Neo Heme) ca simultaneously detect RNA expression. Taking advantage of the existing panel, in this study we evaluated the need for in-use NeoLab Heme NG assay for detection of the CCND1- OE in relation to the FISH data.

Overview of Method

- NeoHeme RNA panel was used for NGS and TPM (transcript per million) was determined by TPM Calculator processed by RNA pipeline
- Refined the cutoff for FISH positive and negative samples for sensitivity and specificity by ROC curve fitting; also used FISH positive samples to evaluate the sensitivity and specificity
- Established and validated qRT-PCR using synthetic controls for evaluating the correctness for call
- For the confirmation of t(11:14) based cutoff for NGS based CCND1 expression qRT-PCR was established and used

Key Finding

• Using NGS we observed CCND1 over expression (verified by qRT-PCR) which may be because of downstream molecular event/mutation on accessory gene which FISH can not detect justifying the need of NGS to supplement FISH.

¹NeoGenomics Laboratories, Inc., Aliso Viejo, CA; ²NeoGenomics Laboratories, Inc., Carlsbad, CA; ³NeoGenomics Laboratories, Inc., Houston, Texas Result

B. ROC curve fitting for cutoff for over expression

an ng GS	ROC curve fitting model	AUC	Cutoff	Sensitivity	Specificity	P value
	Fisher Exact test	0.87	4.14	75%	100%	8.3e-11
	Euclidean Distance	0.87	2.55	81.2%	96.6%	5.1e-10
	Manhattan Distance	0.87	2.55	81.2%	96.6%	5.1e-10
	Mixture of model	0.87	3.07	75%	100%	8.3e-11

Fisher Exact test

1 - Specificity (%)

Euclidean Distance

NGS as positive marker for outcome

2961