

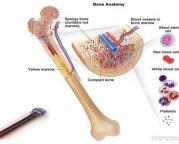
Validation of a Next Generation Sequencing Clinical Assay for Detection of Immunoglobulin Heavy Chain **Clonality and Somatic Hypermutation in Chronic Lymphocytic Leukemia**

Xin-Xing Tan • Tricia Peters • Meredith Berry • Kristyn Jeter • Brigitte Lovell • Victor Venegas • Yanglong Mou • Brad Thomas • Vince Funari • Shari Brown • Josette William **NeoGenomics Laboratories**

Assay Validation for Diagnostic Base-Line Clonality/SHM Evaluation

Introduction

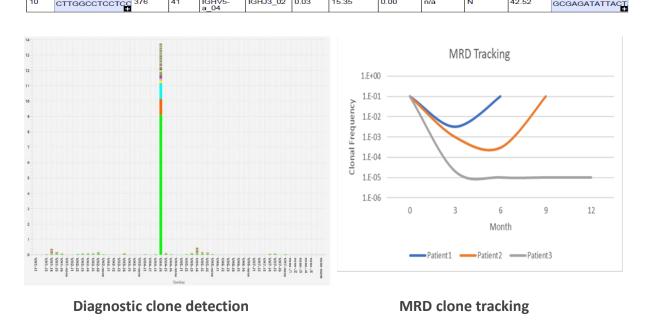
Background: Next-generation sequencing (NGS) provides a powerful high-throughput approach to identify and track clonal B-cell immunoglob (IG) heavy chain clonality and to assess somatic hypermutation (SHM) status in a massively parallel manner. The NGS-based clonality/SHM test demonstrated superior performance over the conventional capillary electrophoresis (CE) methods in characterization of B-cell neoplasms. However, its broad utilization in clinical diagnostics requires extensive validation of assay as well as standardization of the data interpretation.


Methods: In this study, we present an NGS assay for characterization of B-cell malignancies, its validation, and standardized result interpretati For superior sensitivity, this assay was designed to simultaneously target the Leader, FR1, FR2, and FR3 regions of the IGH gene to identify clor IGH V_H-J_H rearrangement, the associated DNA sequences, and to assess the status of somatic hypermutation within the rearranged genes. The assay was also designed to target the IGK gene to identify clonal IGK V_{κ} - J_{κ} , V_{κ} - K_{de} , and INTR- K_{de} rearrangement. Bioinformatics and immunoinformatics analysis were performed using LymphoTrack software, IMGH V-Quest, and ARResT/AssingSubsets. The analysis results we reviewed and interpreted by pathologists.

Results: To implement this assay for clinical diagnostics in B-cell malignancies such as CLL, B-All, DLBCL and MM, etc., we performed an analyti and clinical assay validation to establish the assay accuracy, specificity, sensitivity, repeatability, and reproducibility, with both pre-characterize reference controls and clinical specimens included. Over forty DNA samples from clinical peripheral blood and bone marrow aspirate specime were collected and assessed by the NGS assay for IG clonality and SHM evaluation. Triplicates were included and testing were performed at different times and by different operators to assess the assay precision. Assay sensitivity as low as 2.5% for clonality and 2% for SHM were observed for baseline clonality with as low as 0.001% for tracking MRD. Near-perfect assay specificity (100%) and precision (100%) were observed for baseline clonality with as low as 0.001% for tracking MRD. at these sensitivity levels. The validated assay was further qualified by ERIC (the European Research Initiative on CLL) with a certificate granted standardize the data interpretation of this assay for testing in chronic lymphocytic leukemia. Under the ERIC standards our laboratory was able assess and interpret precisely numerous rare and analytically challenging cases or cases difficult to categorize in CLL such as borderline SHM a mutation rate of 2.08% and classification of productive clone into major CLL stereotyped subsets based on thorough analysis of the VH CDR3 sequence, etc.

Conclusions: A NGS IG clonality/SHM assay was analytically and clinically validated in NeoGenomics' CLIA-certified and CAP-accredited laborated and contract of the second under medical oversight, with a demonstrated rigor of the test by its high accuracy, sensitivity, specificity and robust reproducibility. The clinical diagnostic testing results with this assay is interpreted in accordance with ERIC standards for reliable clinical reporting.

Assay Workflow & Specifications



1B. DNA Extraction

1E. Data Analysis for Diagnostic Clone Detection & MRD Clone Tracking

Rank	Sequence	Length	Merge count	V-gene	J-gene	% total reads	Cumulativ e %	Mutation rate to partial V- gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V- coverage	CDR3 Seq
1		455	21172	IGHV4- 59_08	IGHJ4_02	15.06	15.06	11.26	Y	Y	98.63	GCGAGACGGAG
2		460	57	IGHV2- 70_10	IGHJ6_02	0.04	15.10	1.99	Y	Y	98.67	GCACGGGCGGA
3	стедесстесте	454	46	IGHV5- a_03	IGHJ5_02	0.03	15.13	3.40	Y	Y	100.00	GCGAGACATGGG
4		472	44	IGHV2- 70_13	IGHJ6_03	0.03	15.16	4.65	Y	Y	99.00	not found
5	GTTCCTCTTTGTG	470	43	IGHV1- 69 01	IGHJ4_02	0.03	15.19	0.00	Y	Y	98.99	GCGAGCGGCCG
6	GTTCCTCTTTGTG	470	43	IGHV1- 69 01	IGHJ4_02	0.03	15.23	0.00	Y	Y	98.31	бсебтсестсе
7	стсосстсстсс		43	IGHV5- 51_01	IGHJ4_02	0.03	15.26	0.00	Y	Y	100.00	GCGAGACATGTG
в		460	43	IGHV5- 51_01	IGHJ4_02	0.03	15.29	3.72	Y	Y	99.32	GCGAGAAAGTCC
9	стсоссстсстс	463	42	IGHV5- a_03	IGHJ5_02	0.03	15.32	5.10	Y	Y	100.00	GCGAGACAAGG
10	ottoootootoo	376	41	IGHV5-	IGHJ3 02	0.03	15 35	0.00	n/a	N	42.52	COCACATATTACT

Table 1. Diagnostics base-line and MRD tracking assay specifications

Specifications	Parameters				
Diagnostics DNA Input	50 ng per library				
Diagnostics Library Replicate	1x				
Diagnostics Reads Requirement	50,000 per library				
Diagnostics Clonality Limit of Detection	2.5%				
Diagnostics SHMM Limit of Detection	2%				
MRD DNA Input	700 ng per library				
MRD Library Replicate	5x				
MRD Reads Requirement	700,000 per replicate				
MRD Limit of Detection	0.001%				

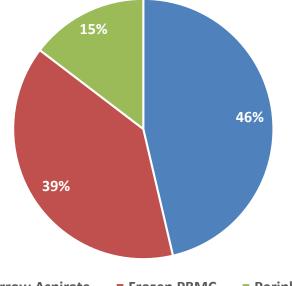
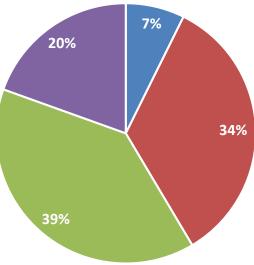

Figure 1. Workflow of the NGS IG clonality/SHM & MRD assay. Human specimen went though DNA extraction, library preparation using the Invivoscribe LymphoTrack kits, and sequenced on Illumina MiSeq with read length of 2x300bp. Raw sequencing data was then analyzed to identify clonality and somatic hypermutation with the Invivoscribe LymphoTrack software, followed with result interpretation using IMGH V-Quest, and ARResT/AssingSubsets.

Table 1. Diagnostics base-line and MRD tracking assay specification. The table listed the assay limit of detection and their requirement in DNA input and data amount.

© 2019 NeoGenomics Laboratories, Inc. All Rights Reserved. MultiOmyx is a trademark of NeoGenomics, Inc which holds a license from GE HealthCare BioSciences Corp. Rev. 112019


Sample #	Specimen Type	Indications	Expected Clonality Status	Expected Clone	Sample #	Identified Clone ID	V-gene	Target	% Clone	Dilute to	Negative to
1	Peripheral Blood	B-ALL	Detected	V1-18, MUTATED	M01	N200328-HNE-00010_O1T1_IGK_Rank1	V4-1	IGK	93.5	0.001%	N200328-HNE-00016_01T1_IGK_Rank
2	Bone Marrow Aspirate	CLL	Detected	V4-39, MUTATED							N200328-HNE-00030_O1T1_IGK_Rank N200328-HNE-00066_O1T1_IGK_Rank
3	Bone Marrow Aspirate	B-ALL	Not Detected	N/A					2.2	0.001%	N200328-HNE-00010_01T1_IGK_Ran
4	Bone Marrow Aspirate	CLL	Detected	V2-70, Unmutated	M02	N200328-HNE-00016_O1T1_IGK_Rank1	V4-1	IGK	3.3		N200328-HNE-00030_01T1_IGK_Ran N200328-HNE-00066_01T1_IGK_Ran
						M03 N200328-HNE-00001_01T1_FR1_Rank1					N200328-HNE-00009_01T1_FR1_Ran
5	Bone Marrow Aspirate	DLBCL	Detected	V3-74, MUTATED	M03		V1-18	IGH_FR1	73.5	0.001%	N200328-HNE-00017_01T1_FR1_Ran
6	Peripheral Blood	CLL	Detected	V4-34, MUTATED							N200328-HNE-00025_O1T1_FR1_Ran N200328-HNE-00001_O1T1_FR1_Ran
7	Bone Marrow Aspirate	CLL	Detected	V1-46, MUTATED	M04	N200328-HNE-00009 O1T1 FR1 Rank1	V2-70	IGH_FR1	72.3	0.001%	N200328-HNE-00017 01T1 FR1 Ran
8	Bone Marrow Aspirate	B-ALL	Detected	IgKappa V5-2							 N200328-HNE-00025_01T1_FR1_Rar
						5 N200328-HNE-00022_01T1_FR2_Rank1		IGH_FR2		0.001%	N200328-HNE-00032_01T1_FR2_Rar
9	Bone Marrow Aspirate	ALL without remission	Detected	V2-26, Unmutated	M05		V3-74		90.2		N200328-HNE-00033_01T1_FR2_Ra
10	Peripheral Blood	ALL	Detected	V5-51, MUTATED		N200328-HNE-00032_01T1_FR2_Rank1	V3-49	IGH_FR2	34.8	0.001%	N200328-HNE-00034_01T1_FR2_Ra
	Bone Marrow Aspirate	ALL	Detected	1) V3-11, UNmutated	M06						N200328-HNE-00022_O1T1_FR2_Rai N200328-HNE-00033_O1T1_FR2_Rai
11				2) V3-23, Unmutated							N200328-HNE-00034_01T1_FR2_Ra
12	Bone Marrow Aspirate	B-ALL	Detected	V3-53, Unmutated							N200328-HNE-00024_01T1_FR3_Ra
	- -				M07	M07 N200328-HNE-00018_01T1_FR3_Rank1	V4-34	IGH_FR3	98.6	0.001%	N200328-HNE-00029_01T1_FR3_Ra
13	Bone Marrow Aspirate	CLL	Detected	V3-11, Unmutated							N200328-HNE-00035_01T1_FR3_Ra
14	Bone Marrow Aspirate	DLBCL	Detected	V3-21, Unmutated						0.001%	N200328-HNE-00018_01T1_FR3_Rai
15	Frozen PBMC	B-ALL with hyperdiploidy	Detected	V4-34_10.6%, Unmuated	M08	08 N200328-HNE-00024_O1T1_FR3_Rank1	V5-a	IGH_FR3	91.5		N200328-HNE-00029_01T1_FR3_Rai
10			Detected	V4-54_10.0%, Onindated							N200328-HNE-00035_01T1_FR3_Ra
•••											N200328-HNE-00014_01T1_LEADER_F
2A	Included Specimen Types & Distribution 2B Patient Indications & Distribution				M09	N200328-HNE-00019_01T1_LEADER_Rank1	. V1-46	IGH_LEADER	15.5		N200328-HNE-00070_01T1_LEADER_F
	Included Specimen Types & Distribution 2B Patient Indications & Distribution										N200328-HNE-00074_01T1_LEADER_
	15% 20% 7%					N200328-HNE-00014_01T1_LEADER_Rank1	V1-3 I	IGH_LEADER	58.8		N200328-HNE-00019 O1T1 LEADER
											N200328-HNE-00070_01T1_LEADER_
					M10			_			N200328-HNE-00074 O1T1 LEADER

Bone Marrow Aspirate
Frozen PBMC
Peripheral Blood

■ ALL ■ B-ALL ■ CLL ■ DLBCL

Limit of Detection determination

Table 3. Assay performance in validation							
Clonality	SHM	%Clone	Clone Detected				
100%	100%	10.0%	100%				
100%	100%	5.0%	100%				
100%	100%	4.0%	100%				
100%	100%	3.0%	100%				
100%	100%	2.5%	100%				
100%	100%	1.0%	0%				
100%	100%	0%	0%				
	Clonality 100% 100% 100% 100% 100% 100%	Clonality SHM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%	Clonality SHM Expected %Clone 100% 100% 10.0% 100% 100% 5.0% 100% 100% 4.0% 100% 100% 3.0% 100% 100% 2.5% 100% 100% 1.0%				

Table 2. Clinical patient samples included in the clonality/SHM assay validation. Table 2 listed the representative subset of forty five clinical samples in total included in the validation. All the included samples were pre-characterized using the validated molecular and/or FLOW methods and their clonality and SHM status are known. Figure 2A & 2B are the specimen type distribution and indication distribution of the forty five patient samples included in the validation.

Figure 2. Assay performance in validation and limit of detection (LoD) determination. A cohort of forty five clinical samples were included and assay accuracy, specificity, and sensitivity were determined as the percentage of true positives and true negative calls divided by the total number of evaluated calls, the percentage of true negative calls divided by true negative calls an false positive calls, and the percentage of true positive calls divided by true positive calls and false negative calls, respectively. A total of fifteen clinical samples were processed in three replicates in the same run to determine the assay repeatability. This same sample set was processed by the same operator at different time, by a different operator, and on a different instrument to establish the assay reproducibility across times, operators, and instrument. A serial dilutions was prepared and assessed multiple times to determine the assay LoD.

#1990

Assay Validation for MRD Tracking

Table 4. Clinical patient samples included in the MRD assay validation. Table 4 listed the representative subset of twenty four clinical samples in total included in the validation. All the included samples were pre-characterized and tested in the previous clonality/SHM validation with known clones as biomarkers.

Table 5. Assay performance in validation

Specifications	Acceptance Criteria	Measured Results
Assay Accuracy	90.0%	97.2%
Assay Specificity	90.0%	99.4%
Assay Sensitivity	90.0%	90.9%
Assay Reproducibility Across Times	90.0%	96.6%
Assay Reproducibility Across Operators	90.0%	96.8%

Table 5. Assay performance in validation. The twenty four clinical samples with known clonality and clone percentage were each diluted to 0.001%. The dilutions were processed following the MRD testing protocol to determine the assay accuracy, specificity, sensitivity, and reproducibility. Assay accuracy, specificity, and sensitivity were calculated as the percentage of true positives and true negative calls divided by the total number of evaluated calls, the percentage of true negative calls divided by true negative calls an false positive calls, and the percentage of true positive calls divided by true positive calls and false negative calls, respectively.

Key Conclusions

- An NGS assay for characterization of B-cell malignancies was analytically and clinically validated in NeoGenomics' CLIA-certified and CAP-accredited laboratory under medical oversight.
- The assay was designed to simultaneously target the Leader, FR1, FR2, and FR3 regions of the IGH gene and was designed also to target the IGK gene to identify clonal rearrangement
- The assay was validated for diagnostics base-line clonal rearrangement detection and somatic hypermutation, and also validated for MRD tracking, both with superior accuracy, sensitivity, specificity and robust reproducibility.
- The validated assay was further qualified by EIRC (the European Research Initiative on CLL) with a certificate granted to standardize the data interpretation of this assay for testing in chronic lymphocytic leukemia